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ABSTRACT 
 
Biological invasions represent a major threat to ecosystem services and products, with the potential 
to disrupt ecosystems across a broad spectrum of bioclimatic regions. Consequently, it is essential 
to monitor the spread of invasive species systematically and over extensive areas. Remote sensing 
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and geographic information systems have long been recognized as valuable tools for achieving this 
goal. This paper examines the efficacy of optical satellite data from different seasons in detecting 
the invasive species Opuntia stricta (Australian pest pear) within the southern portion of the Tsavo 
East National Park. Maximum Entropy (MaxEnt) modelling was employed to determine the most 
relevant environmental variables, with a total of ten predictors tested. The results demonstrated that 
ndvi2017dry, rvi2018wet, rvi2017wet, msavi2018dry and rvi2018dry were the most effective 
Vegetation Indices (Vis) for detection of Opuntia stricta. The study also found that seasonal 
variations played a significant role in enhancing detection accuracy. The fine-scale MaxEnt 
modelling predicted core areas of invasion, yielding a mean AUC of 0.718. Suitable habitat within 
the study area was classified into high, medium, low, and very low categories, with 51 km² identified 
as highly suitable for Opuntia stricta growth. Further classifications included 37 km², 83 km², and 
3,589 km² for medium, low, and very low suitability, respectively. Opuntia stricta was detected in 
4.15% of the study area. From this study we concluded that the invasive species remain a big risk 
to protected areas especially in the Tsavo East National Park. Continued monitoring is 
recommended especially in areas predicted to have high invasion in future. This study provides 
baseline data for prioritizing invasive species monitoring and management strategies. 
 

 
Keywords: AUC; biological invasion; MaxEnt; opuntia stricta; remote sensing; sentinel-2; vegetation 

indices (Vis). 
 

1. INTRODUCTION 
 
Global conservation strategies focus on 
protecting biodiversity, conserving representative 
ecosystems, and managing protected areas. The 
Convention on Biological Diversity (CBD) 
Strategic Plan for Biodiversity 2011–2020 has 
provided a crucial framework for international 
biodiversity conservation (Rees et al. 2021). 
However, the creation of protected areas alone 
does not guarantee ecosystem integrity as they 
face various threats including the invasion of 
alien species (Foxcroft et al. 2013). Addressing 
these threats requires sustained active 
management. Invasive alien species, in 
particular, pose serious threats to protected area 
ecosystems worldwide (Foxcroft et al. 2013). The 
rise in the number and impact of invasive non-
native species (hereafter referred to as "invasive 
species") is leading to biodiversity loss, 
ecosystem degradation, and the impairment of 
ecosystem services on a global scale (Pyšek & 
Richardson 2010, Foxcroft & Rejmánek 2007, 
Simberloff et al. 2013, Waititu et al. 2022, 
Musengi et al. 2021, Shackleton et al. 2017). 
Among these, “Opuntia stricta is listed in the 100 
of the World’s Worst Invasive Alien Species 
(CABI, 2014). 
 
Relatively little has been done in terms of the 
study and management of Opuntia in Kenya in 
particular and East Africa in general”. Githae 
(2018) “reviewed the existing literature on the 
invasion of Opuntia in Kenya. Her study involved 
a review of published information from a variety 
of sources, including online scientific 

publications, books, field guides and expert 
opinion on invasive alien species with a focus on 
Opuntia stricta species in Kenya. 
 
Key priority pathways and impacts were 
categorized according to ecological and socio-
economic impacts and also categorized based 
on the current framework of invasive species. 
Much review on the status and impacts of 
invasive alien species (IAS) in Kenya has been 
done to update knowledge on the occurrence 
and drivers of introduction. Such studies are 
crucial for developing protocols for prevention 
and management of Opuntia stricta. 
Nevertheless, further comparative studies on the 
target species, their pathways of introduction, 
and spatial distribution are essential to enhance 
understanding of the interacting factors driving 
their invasion” (Githae 2018). 
 
Impacts of invasive species have been examined 
from ecological and economic perspectives while 
studies based on social perspectives, though still 
limited, are gaining increased attention (Wells et 
al. 2021, García et al. 2012, Wilson et al. 2011, 
Kannan et al. 2014). An understanding of the 
anthropogenic perspective is crucial, as human 
activities influence plant distribution and 
necessitate management of invasions to reduce 
negative impacts and maximize potential 
benefits. Local people's perception of the value, 
impact, and management of Opuntia stricta in the 
context of pastoralist in Kenya has been the area 
of focus of late with broad scale surveys being 
undertaken. Some progress has been made in 
integrating the management of invasive alien 
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species with other management functions while 
emphasizing the human aspect (Foxcroft et al. 
2013). According to (Strum et al. 2015), it is 
important to look at the underlying causes of 
alien plant invasions to avoid exacerbating their 
impact on rangelands. 
 

“However, appropriate and effective measures 
for the monitoring, control, or elimination of these 
species are essential. Additionally, laws and 
regulations prohibiting the introduction and use of 
such species should be strictly enforced and 
consistently upheld. Effective policies are needed 
to prevent an increase in the significant negative 
impacts caused by IAS, including those that are 
not well established and with limited distribution” 
(Githae 2018). “Poor description of the species 
because of variation in growth form, lack of 
information on proper management, and poor 
monitoring and control measures contribute to 
the spread of the invasive species. Effective 
management of Opuntia in the country requires 
comprehensive mapping and inventory of the 
species across the affected counties. 
Additionally, creating awareness among the 
communities on the effects of invasions and 
possible solutions is vital” (Githae 2018). 
 

Studies done (Ouko et al. 2020) support that 
high-resolution time-series images may result in 
new findings on the distribution of invasive 
species (Opuntia stricta) in Northern Kenya. 
Ouko et al. (2020) “predicted the potential 
distribution of A. reficiens and Opuntia spp under 
different climate change scenarios using bio-
climatic variables. Furthermore, mapping on the 
distribution of Acacia reficiens and Opuntia spp. 
in the Samburu – Laikipia region using a time 
series of MODIS vegetation indices and 
topographic environmental variables was carried 
out. Similarly, a study on Opuntia stricta in 
Laikipia, Kenya was undertaken using ensemble 
machine learning classifiers” (Muthoka et al. 
2021). 
 

Recent advances in active and passive remote 
sensing technology have created new and cost-
effective opportunities for the application of 
remote sensing to invasive species mapping. 
“Field observations are expensive and laborious, 
satellite imaging is likely the only cost-effective 
approach to map IAS across extensive areas” 
(Xue & Su 2017). Studies by (Naharki et al. 
2024) using drones equipped with optical 
sensors could offer an effective and nearly real-
time way to detect A. altissima. (Resasco et al. 
2007) “conducted long-term monitoring studies of 
the Amur honeysuckle (Lonicera maackii) using 

optical sensors like Landsat imagery. 
Specifically, remote sensing has emerged as a 
powerful tool for the detection and monitoring of 
invasive plant species” (Huang & Asner 2009). 
“MODIS was used in mapping presence and 
predicting phenological status of invasive 
buffelgrass in Southern Arizona where they 
accurately predicted buffelgrass patches in 
Saguaro National Park” (Wallace et al. 2016). 
 
Bradley & Mustard (2005) “took advantage of the 
amplified interannual response of invasive cheat 
grass (Bromus tectorum) to map infestations 
across the Great Basin watershed using Landsat 
and Advanced Very High-Resolution Radiometer 
(AVHRR) data. Cheat grass (Bromus tectorum), 
an invasive annual grass, has also been 
successfully detected because it germinates in 
winter months prior to most native grasses.” 
Peterson (2006) estimated and mapped percent 
cheat grass ground cover in Nevada on the basis 
of the invasive species’ relatively early spring 
green-up and subsequent senescence, which 
were identifiable from two Landsat ETM+. 
Peterson was able to distinguish cheat grass 
from other vegetation by using scenes from 
Landsat 7 ETM+ on two different dates within a 
single year. In both cases, the researchers were 
able to exploit subtle phenological differences 
(i.e. extended growing season, rapid response) 
between the invaders and associated native flora 
within a growing season.  
 
Similarly, studies (Skowronek et al. 2016) show 
that the detection rates for low cover plots were 
considerably higher for invasive herb (Centaurea 
solstitialis) than for invasive grass (P. aquatica) 
using airborne imaging spectroscopy. According 
to a study done classified IKONOS imagery may 
be useful for inferring landscape patterns that 
relate to the persistence and spread of 
Melaleuca and other invasive species (Fuller 
2005). In southern California (Hamada et al. 
2007) used discriminant analyses of 
presence/absence data and hierarchical 
clustering with hyperspectral imagery collected in 
October. Overall accuracy of their research 
varied by scene and minimum patch size, and 
results tended to over classify tamarisk 
distribution. These studies demonstrate an 
evolution of remote sensing and image 
processing for detecting tamarisk and other 
invasive species. “The development of new 
airborne and satellite sensors and platforms, 
coupled with advanced statistical software, 
geographic information systems (GIS), and 
predictive models, give researchers a variety of 
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tools to detect and predict the distribution of 
invasive species. The insight applied in 
quantifying the suitability areas for the invasive 
species can be extrapolated to other protected 
areas with the same species.” 
 
Besides, most previous studies have used 
remote sensing to map invasive species Opuntia 
stricta (Ouko et al. 2020), but seasonal 
composites have not been used. In this study, we 
used Sentinel-2 satellite images and the MaxEnt 
model to map Opuntia stricta in Tsavo East 
National Park. To examine the effect of 
seasonality on the mapping, we created 
seasonal composites for both the dry and wet 
seasons. From these composites, we calculated 
various vegetation indices to identify the optimal 
set of features for mapping Opuntia stricta 
 
To the best of our knowledge, this is the first 
comprehensive study of that uses seasonal 
composites to model the Opuntia stricta in the 
Tsavo National Park. The research findings will 
assist policymakers and Park managers on 
prioritizing control efforts on areas vulnerable to 
species invasion. The results and the proposed 
control strategies, from this study, will enhance 

conservation efforts by providing insights in the 
management of the   Opuntia Stricta species in 
the protected area.  
 

2. MATERIALS AND METHODS  
 

2.1 Site Description 
 

The study was carried out in the southern part of 
Tsavo East National Park situated in Taita 
Taveta County in Kenya (Fig. 1). The park lies 
between latitude 2.659°S and longitude 38.973°E 
and the altitude ranges between 300 and 500 m 
above sea level (m.a.s.l.) and covers an area c. 
4120 Km2. The study area experiences a mean 
annual rainfall varies locally between 250 and 
500 mm (Leuthold 1978). Most of the rain falls in 
two rainy seasons namely: March–May and 
November–December (Tyrrell & Coe 1974). 
Meanwhile, June–October constitutes a long dry 
season (Leuthold 1978, Mcknight 2000, Ngene et 
al. 2013). The study area is dominated by 
Acacia–Commiphora bushlands and thickets 
(Tyrrell & Coe 1974). The study area also 
supports a diversity of wildlife species and is an 
important tourist destination (Pinter-Wollman 
2009).  

 

 
 

Fig. 1. Study area of the Southern part of Tsavo East National Park 
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2.2 Remote Sensing Data – Sentinel-2 
Imagery 

 

European Space Agency (ESA) Sentinel-2 
mission provides open access to earth 
observation data at a high spatial as well as 
temporal resolution (Ng et al. 2017). Sentinel-2 
constellation comprises two satellites Sentinel-2A 
and Sentinel-2B with approximately 5 days’ 
revisit time. Each satellite has 13 bands (Table 1) 
ranging from visible to short wave infrared 
portion of the electromagnetic spectrum with a 
maximum spatial resolution of 10 m 
(https://eos.com/find-satellite/sentinel-2/). In this 
study data were acquired between January              
2017 and 2018 December, which almost 
matched with field survey dates to ensure that 
any observed differences were due to the 
variables of interest rather than the timing 

discrepancies. Furthermore, we selected the 
images with cloud cover of less than 10%. In this 
study, Band 1 and Band 9 were excluded in the 
analysis resulting in only ten bands being 
utilised.  
 

2.3 Precipitation Data 
 
The conditions of vegetation cover largely 
depend on climatic parameters such as rainfall. 
We generated a composite image for the time of 
interest using Google Earth Engine (GEE), where 
vegetation indices served as predictors in our 
model. CHIRPS (Climate Hazards Group Infrared 
Precipitation) data aided in creating dry-season 
and wet-season composites, helping us to 
identify months with different rainfall amounts in 
the study area in the years 2017 and 2018       
(Fig. 2). 

 
Table 1. Sentinel-2 spectral bands 

 

Band Spectral region Central wavelength(um) Resolution(m) 

1 Coastal aerosol 0.443 60 
2 Blue 0.490 10 
3 Green 0.560 10 
4 Red 0.665 10 
5 Vegetation Red Edge 0.705 20 
6 Vegetation Red Edge 0.740 20 
7 Vegetation Red Edge 0.783 20 
8 Near Infrared 0.842 10 
8A Vegetation Red Edge 0.865 20 
  9 Water vapor 0.945 60 
10 Shortwave Infrared   1.375 60 
11 Shortwave Infrared 1.610 20 
12 Shortwave Infrared 2.190 20 

 

 
 

Fig. 2. Rainfall trends in 2017 and 2018 
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2.4 Target Species and Occurrence Data 
 
A total of 432 occurrence records were gathered 
between January 2017 and December 2018 
within the designated study area. These records 
include the X and Y coordinates (referencing 
WGS 1984, UTM Zone 37M) indicating the 
precise locations where Opuntia stricta was 
directly observed. Species occurrence points 
were collected using a handheld GPSMAP 64s 
unit in areas close to road networks, owing to the 
challenging terrain within the study region. The 
records were subsequently compiled in an Excel 
spreadsheet and exported as a comma-
separated values (CSV) file, formatted for use in 
MaxEnt modelling. Additionally, supplementary 
occurrence points of Opuntia stricta were 
digitised from high-resolution Google Earth 
(Digital Globe) imagery. 
 

2.5 Calculation of Vegetation Indices (Vis) 
 
The selection of vegetation indices (Table 2) 
aimed to enhance the model's predictive 
accuracy while accounting for the unique 
characteristics of dryland environments and 
mitigating atmospheric and soil effects. 
Specifically, we incorporated the following 
vegetation indices into our analysis: Ratio 
Vegetation Index (RVI): Calculated as the ratio 
between the red band and the near-infrared 
(NIR) band, RVI captures vegetation 
characteristics based on their spectral 
reflectance properties Normalized Difference 
Vegetation Index (NDVI): Computes the 
difference between NIR and red reflectance 
divided by their sum, highlighting vegetation 
presence. NDVI values range between −1 and 1. 
Modified Soil Adjusted Vegetation Index 
(MSAVI): A modified version of the Soil Adjusted 
Vegetation Index (SAVI), MSAVI minimizes soil 
background effects to improve vegetation 
detection in dryland environments. Red EVI (Red 
Edge Vegetation Index) focuses on the red-edge 
portion of the spectrum, which is sensitive to 
changes in chlorophyll content and leaf structure. 
Opuntia stricta may exhibit distinct spectral 
responses in the red-edge region, allowing Red 
EVI to capture subtle differences between 
Opuntia stricta and other vegetation types or 
background materials. These vegetation indices 
were chosen for their robustness in 
characterizing vegetation cover, particularly in 
arid areas like those where Opuntia stricta 
thrives. By leveraging these indices, we aimed to 
enhance the discriminatory power of our 
classification model, thereby improving its ability 

to accurately identify Opuntia stricta presence 
We integrated data across three distinct 
seasons—dry, wet, and short-dry—in 2017 and 
2018 to enhance Opuntia stricta detection in our 
study area. The Google Earth Engine (GEE) 
platform (Gorelick et al. 2017) was employed to 
obtain, process, and compute textural metrics 
from Sentinel-2 metrics data (see Table 1) during 
these specific seasons. Ground truthing data for 
Opuntia were gathered using both our field 
knowledge and imagery from Google Earth 
(http://earthexplorer.usgs.gov/). An image 
composite from several different image dates 
was deployed to improve target detection. Next, 
we calculated median composites using the 
Google Earth Engine platform. The temporal 
windows were selected based on the general 
climatological patterns of the study area, as well 
as the specific rainfall dynamics observed during 
the years under investigation (i.e., 2017 and 
2018). These windows account for the short wet 
and short dry seasons, as outlined in Table 3. 
 

2.6 MaxEnt Species Distribution 
Modelling 

 

This study used MaxEnt (Maximum Entropy) 
version 3.3.3 e machine-learning algorithm to 
model the distribution of Opuntia Stricta in the 
southern Part of Tsavo East National Park, 
Kenya. MaxEnt uses presence-only data to 
define known conditions within the parameters of 
the independent variables to predict a species’ 
distribution and excludes all conditions that are 
unfounded or undefined. The model is nonlinear, 
nonparametric, and not sensitive to 
multicollinearity. Besides having several 
evaluation features built into the program, 
MaxEnt also provides the percent contribution of 
each predictive variable (Phillips et al. 2004, Elith 
et al. 2011, Phillips et al. 2006). 
 

2.6.1 Model calibration 
 

“For improving the model performance, a 
convergence threshold of 10−5 was calibrated 
with a maximum number of iterations at 5000. 
These settings provide the models adequate time 
for convergence of input information to build-up 
the models. It should be noted that a high 
number of iterations gives the models sufficient 
time to process the data, thus avoiding over- or 
under-prediction of the species distribution. Other 
calibrations for improving the models included 
setting the maximum number of background 
points at 10 000, with a regularization multiplier 
value of 1. The run type was a cross-validation 
method that divides the original samples into a 



 
 
 
 

Adionyi et al.; J. Geo. Env. Earth Sci. Int., vol. 28, no. 12, pp. 1-18, 2024; Article no.JGEESI.127212 
 
 

 
7 
 

set of training and testing of the models. The 
MaxEnt output was formatted to logistics with 
75% of the occurrence records were used for 
training and 25% for random testing of the 
model. This means that 75% of the data inputs 
were used for suitability mapping of the invasive 
species in modelling and 25% of the data for 
random testing of the model generated by 
MaxEnt. Furthermore, an auto feature option was 
selected with 15 replications, and the rest were 
kept as default. By these, the occurrence data 
are randomly split into a number of equal-sized 
groups called ‘folds’, and models are created 
leaving out each fold in turn. These settings have 
been undertaken to give a broader and less 
discriminating prediction” (Phillips et al. 2006). 

2.6.2 Model evaluation 
 
The accuracy of the model was calculated using 
the receiver operating characteristics curve 
(ROC) and the Area Under the Curve (AUC) 
(Elith et al. 2011, Phillips et al. 2006, Mzungu et 
al. 2024). An AUC value of 0.5 shows that model 
predictions are not better than random; < 0.5 are 
worse than random; 0.5–0.7 indicates poor 
performance; 0.7–0.9 reasonable/moderate 
performance; and > 0.9, high performance 
(Peterson et al. 2011). In evaluating the most 
important predictors influencing Invasive species 
occurrence, the percentage contribution column 
was used to select the most important predictors 
(Table 4, Percentage contribution >0). 

 
Table 2. Formulas of the existing Vegetation indices and references 

 

Index Description Formula Reference 

NDVI Normalized Difference Vegetation 
Index 

(NIR-RED) 
(NIR+RED)  

Sun et al., 

RAVI Ratio Vegetation Index (R/NIR) Sun et al., 
MSSAVI Modified Secondary Soil Adjusted 

Vegetation Index 
1/2 * ((2*(NIR+1)) - 
(((2*NIR)+1)2 - 8(NIR-red))1/2). 

Sun et al., 

Red Edge  
NDVI 

Red Edge Normalized Difference 
Vegetation Index 

 (NIR − RE) (NIR + RE) Sun et al., 

 
Table 3. Sentinel-2 image dates and image composites used to classify Opuntia stricta within 

the southern part of Tsavo East National Park 
 

Index /Year Start dates End dates Season 

NDVI 2017 June 01, 2017  Oct 31,2017 Short Dry 
 Nov 01,2017 Dec 31 2017  Short Wet 
 Jan 01 2017  Dec 31 2017 Short Dry +Short Wet 

NDVI 2018 Jan 01 2017 Feb 28 2018 Short Dry 
 Mar 01 2018  May 31 2018 Short Wet 
 Jan 01 2017   Dec 31 2018 Short Dry +Short Wet 

RVI 2017 June 01, 2017  Oct 31,2017 Short dry 
 Nov 01,2017  Dec 31 2017 Short wet 
 Jan 01 2017  Dec 31 2017 Short Dry +Short Wet 

RVI 2018 Jan 01 2018  Feb 28 2018 Short Dry 
 Mar 01 2018  May 31 2018  Short Wet 
 Jan 01 2017   Dec 31 2017 Short Dry +Short Wet 

MSAVI 2017 June 01, 2017  Oct 31,2017 Short Dry 
 Nov 01,2017 to Dec 31 2017  Short Wet 
 Jan 01 2017 to  Dec 31 2017 Short Dry +Short Wet 

MSAVI 2018 Jan 01 2018 to Feb 28 2018 Short Dry 
 Mar 01 2018 to  May 31 2018 Short Wet 
 Jan 01 2017 to  Dec 31 2018 Short Dry +Short Wet 

DVI 2017 June 01, 2017 to Oct 31,2017 Short Dry +Short Wet 
 Nov 01,2017 to Dec 31 2017 Short Dry 
 Jan 01 2017 to  Dec 31 2017 Short Wet 

DVI2018 Jan 01 2018 to Feb 28 2018 Short Dry +Short Wet 
 Mar 01 2018 to  May 31 2018 Short Dry 
 Jan 01 2017 to  Dec 31 2018 Short Dry 
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2.6.3 Model Output 
 

MaxEnt outputs included weighted environmental 
predictors ranked, showing each predictor’s 
percentage contribution to the model’s overall 
performance (Table 4) With the jackknife setting 
activated, MaxEnt weighed each variable 
contribution to the model’s gain. The other 
outputs included response plots [Fig. 6] which 
were used to describe the tolerance limits of 
O.stricta to each variable. The plots showed 
each variable effect on the species being plotted 
and a final potential distribution model. 
 

2.6.4 Predictive occurrence and habitat 
suitability for the Opuntia stricta  

 

Based on prediction models, probability of the 
Opuntia stricta and habitat suitability maps were 
created and probability values were categorized 
into four suitability levels: ‘very low’ (0–0.2), ‘low’ 
(0.2–0.4), ‘medium’ (0.4–0.6), and ‘high 
suitability’ (0.6–1) (Figs. 6 and 7). This 
classification scheme has been extensively 
applied in past studies (Ansari & Ghoddousi 
2018, Zhang et al. 2019, Obunga et al. 2022). 
 

3. RESULTS 
 

3.1 Model Performance 
 

The MaxEnt models, run with 15 replications, 
provided reliable estimates for the distribution of 
Opuntia stricta, achieving a mean AUC of 0.718 
(Fig. 3). 

Fig. 4 depicts the jackknife measure of variable 
importance. The environmental variable with the 
highest training gain was used in isolation (blue 
bars) is NDVI 2017 short dry season which 
therefore appears to have the most useful 
information by itself. The environmental variable 
that decreases the gain most (light green bar) 
when omitted is NDVI 2017 short dry season for 
both scenario, which therefore appears to have 
the most information that isn't present in other 
variables. This is followed by NDVI 2017jd (short 
dry and wet season), Ratio vegetation index 
2017jd (short dry and wet season) and red edge 
NDVI 2017 short dry season. If MaxEnt uses only 
modified soil adjusted vegetation index (MSAVI 
short dry season) it achieves almost no gain, so 
that variable is not (by itself) useful for estimating 
the distribution of Opuntia stricta (Fig. 4). 
 

3.2 Analysis of Variable Contributions 
 
Table 4 shows the contribution of each 
explanatory variable within the MaxEnt model. 
The percentage contribution column shows how 
each variable is important to the model's 
predictions. For example, "ndvi2017dry" 
contributes 50.2% to the model's predictions. 
This indicates the relative importance of each 
variable in influencing the model's output. Higher 
percentages suggest greater importance while 
Lower percentage shows least importance. A 
large decrease indicates that the model depends 
heavily on that variable. 

 

 
 

Fig. 3. Receiver operating characteristic (ROC) curve for the Opuntia stricta species 
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Fig. 4. The graph provided is a "Jackknife of AUC" (Area Under the Curve) analysis for the 
species Opuntia stricta. This graph shows the importance of different environmental variables 

in predicting the presence or suitability of habitat for the species 
 
Table 4. Percentage contribution and permutation importance of predictor variables in MaxEnt 

models 
 

Variable Percentage contribution Permutation importance 

ndvi2017dry 55.5 50.1 
rvi2018wet 15.4 7.6 
rvi2017wet 9.9 7.7 
msavi2018dry 7 17.8 
rvi2018dry 6 10.7 
redevi2017dry 5.4 1.9 
rvi2017jd 0.5 0.9 
ndvi2017jd 0.3 3.3 

 

3.3 Response Curves 
 

The response curves shown in Fig. 5 depicts 
how each environmental variable affects the 
Maxent prediction. The curves illustrate how the 
predicted probability of presence changes as 
each environmental variable is varied, keeping all 
other environmental variables at their average 
sample value. 
 

3.4 Predictive Occurrence Map for the 
Opuntia stricta 

 

Predicted probability of the Opuntia stricta is 
displayed in Fig. 6. Probability of Opuntia stricta 
presence was found to be high on the southern, 
eastern parts of the Tsavo East National Park. 
 

3.5 Habitat Suitability Map for Opuntia 
Stricta Species  

 

The MaxEnt software was used to model suitable 
sites within the study area against selected 
environmental variables, which included the 
vegetation indices. This analysis generated 

distinct classifications, classifying Opuntia stricta 
suitable habitats into high, medium, low, and very 
low-preference areas within the study area (Fig. 
7). An area of 51km2 was identified as highly 
preferred habitat for Opuntia stricta growth. 
Further, an area measuring 37 km2 ,83 km2 and 
3589.36km2 were classified as medium, and  
very low habitat suitability areas for Opuntia 
stricta occurrence respectively, within the 
southern part of the Tsavo East National Park 
ecosystem.  
 

Predicted Potential distribution of the invasive 
cactus Opuntia stricta on the maximum entropy 
model in the southern part of Tsavo East 
National Park. Cooler areas indicate low habitat 
suitability while warmer areas correspond with 
high habitat suitability. According to (Hestir et al. 
2008) study on land cover mapping in savannah 
using combination of seasons and sensors found 
out that short-dry season outperform the dry and 
wet season models, as the effect of season is 
able to provide cloud free data and is wet enough 
to allow for the distinction between woody and 
herbaceous vegetation. 
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 E                                                                                   F 

  
 

Fig. 5. The Opuntia stricta response curves for the environmental predictors, where: Normalized Difference Vegetation Index 2017 dry season (A), 
Ratio Vegetation Index 2018 wet season (B), Modified Secondary Soil Adjusted Vegetation Index 2018 dry season (C), Ratio Vegetation Index 2017 

wet season (D), Ratio Vegetation Index 2018 dry season (E) and Red Edge Normalized Difference Vegetation 2017 dry season (F) 
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Fig. 6. Predictive occurrence map of Opuntia stricta in Southern part of Tsavo East National 
Park. Probability of one indicates a high likelihood of finding the species within the raster 

square, and zero indicates that it is unlikely that the species will be found there 
 

4. DISCUSSION 
 

Our findings suggest that a MaxEnt model using 
limited presence-only data can effectively 
estimate habitat suitability for invasive species 
across the Tsavo landscape. Most suitable 
habitat for Opuntia stricta was predicted in the 
southern tip of the Tsavo East National                   
Park (TENP) parts that include the Bachuma 
areas, Ndara plains and Mukwaju areas                   
(Fig. 6), and its distribution was quite 
fragmented. The MaxEnt model’s internal jack 
knife test of variable importance showed that 
‘ndvi 2017 dry)’, and ‘rvi2018wet)’ were the two 
most important predictors of Opuntia stricta 
habitat distribution (Fig. 5 and Table 4). These 
variables presented the higher gain (that is, 
contained most information) compared to other 
variables (Fig. 2 and Table 1). Using four 
arbitrarily defined probability classes, the high 
suitability class had an area of 51 km2;            
medium-37 km2; low- 83 km2; and very low-3589 

km2 (Fig. 5 and Table 5). This study provides           
the first predicted potential habitat suitability map 
for invasive species (Opuntia stricta) in the 
TENP. Our findings are in agreement that 
vegetation indices such as NDVI can be used to 
detect the occurrence of Opuntia stricta in the 
park.  
 
“From this view our study agrees with findings of 
other researchers like” (Bradley & Mustard 2005, 
Peterson 2006, Kandwal et al. 2009, Evangelista 
et al. 2009, Amiri et al. 2013). “TVI and DVI 
indices were used for mapping the invasive 
species Tamarisk in the lower Arkansas River in 
Southwestern Colorado” (Evangelista et al. 
2009). Studies by (Amiri et al. 2013) on 
Identification of invasive species using remote 
sensing and vegetation indices showed that 
NDVI, RVI, TVI and NRVI were the most suitable 
indices for the discrimination of Cirsium arvense 
species. These studies are consistent with our 
findings. 
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Fig. 7. The habitat suitability for Opuntia stricta in the Southern part of Tsavo East National 
Park 

 
Table 5. Habitat suitability area for Opuntia Stricta in the Southern part of Tsavo East National 

Park 
 

Suitability areas Very Low (km2) Low (km2) Medium (km2) High (km2) 

South of TENP 3589.36  83.25 37.85 51.34 

 
“The applications of medium spatial resolution 
(20m) satellite imagery in the rangeland for 
vegetation condition assessment and monitoring 
has proven successful in yielding acceptable 
results. For instance, the study by” (Jafari et al. 
2017) on MODIS NDVI index at different 
landscapes indicates that this index has high 
potential in detecting vegetation cover and 
discriminating different condition classes. The 
NDVI index was able to discriminate rangeland 
condition classes, especially extreme classes, 
across and within the vegetation types. Similarly, 
potential of Sentinel-2, was used in the detection 
of Opuntia stricta abundance based on only the 
spectral bands as well as in combination with 
different season (Muthoka et al. 2021). Our study 
confirms that vegetation indices such as NDVI 

can be used to detect the occurrence of Opuntia 
stricta in the park. 
 

This is the first comprehensive study that 
employs optical satellite images data for both wet 
and dry seasons in identifying invasive species 
Opuntia stricta in the Tsavo East National Park. 
Furthermore, no study has explored on how 
vegetation indices can be used in detecting the 
invasive species. Medium resolution (30m) 
Sentinel-2 multi-time imagery from the Google 
Earth Engine was used to create composite 
images of interest. This study incorporated                
both wet season, dry season and all-season 
indicators to effectively capture the complexities 
of the change, and sought to develop a 
comprehensive model for spatial-distribution                  
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of the impact of Opuntia stricta in the study           
area. 
 

4.1 Role of Season Indices 
 
Both dry and wet season Sentinel-2 composites 
were used for classification. The integration of 
data from several seasons and sensors provided 
a more accurate classification. The target 
vegetation types were taken into consideration 
while analysing the data (Borges et al. 2020). A 
study done by (Borges et al. 2020) on Sentinel-1 
and Sentinel-2 data for Savannah Land Cover 
Mapping: Optimizing the Combination of Sensors 
and Seasons proved that the short-dry season 
should be preferred over the wet and dry 
seasons for both multisensor combinations and 
optical data. Similarly, our study analysis found 
out that short dry season composites performed 
best in detecting the Opuntia stricta plant. The 
grasses, woody cover and other herbaceous 
vegetation turn brown in dry seasons (January to 
March, July to September 2017 and 2018 
respectively), while the Opuntia stricta vegetation 
would appear green throughout both seasons 
and thus making it possible to differentiate 
positively. 
 
The difference between the dry and the 
combination of wet and dry is minimal. We 
therefore considered the dry season, 
characterised by no rains, to be equally suitable 
for Opuntia stricta detection. Field observations 
during the dry period indicated that Opuntia 
stricta remained relatively green throughout the 
year due to retention moisture in their succulent 
stems. These Opuntia stricta stands are easily 
identifiable during this extreme dry seasons of 
the year. The invasive species survive during dry 
periods by retaining their moisture in their 
succulent stems. Opuntia species normally 
thrives in arid and semi-arid areas, and has 
adaptations to water scarcity and high 
temperatures. The semi-arid environments are 
the habitats of plants which have adapted in 
severe hot and dry regions (Jafari et al. 2017). 
Vegetation indices improved the detection 
accuracies, signalling better habitat suitability 
areas where Opuntia are likely to occur. 
Similarly, studies by (Amiri et al. 2013) support 
our findings that combined remotely-sensed data 
(vegetation indices) with the invasive species 
occurrence data can be used in a predictive 
model to identify sites vulnerable to species 
invasion. Since MaxEnt is an important tool for 
mapping the plant invasions, the results can help 
scientists and Park Managers to decide when 

and where to prioritize monitoring efforts for the 
likely invasion of habitat in future (Jafari et al. 
2017). 
 

5. CONCLUSION AND FUTURE 
RECOMMENDATION 

 
Our study sought to examine how the vegetation 
indices can detect the Invasive Opuntia stricta 
using Remote Sensing and MaxEnt in Tsavo 
East National Park, Kenya. This was the first 
time that Opuntia stricta suitability mapping has 
been conducted based on satellite seasonal 
composites hence providing novel insights into 
its suitability especially in the protected areas. 
The results demonstrated that ndvi2017dry, 
rvi2018wet, rvi2017wet, msavi2018dry and 
rvi2018dry were the most effective Vegetation 
Indices (Vis) for detection of Opuntia stricta. 
Finally, the potential habitat distribution map 
developed in this research could inform the 
management where to prioritize restoration 
efforts and guide-evidence based conservation 
strategies. In the future, we intend to improve on 
this work by calculating composites from all the 
bands individually to improve on the accuracy of 
Opuntia stricta detection in remote sensing 
imagery for generating subsequent species 
distribution maps 
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